Information sheet for the course: Applied Chemistry

University: Alexander Dubček University of Trenčín							
Faculty: Faculty of Industrial Technologies in Púchov							
Course unit code:MI-P-2Course unit title:Applied chemistry							
Form, scope and method of educational activity:							
Form of study: Lecture / Seminar / Laboratory tutorial							
Recommended number of lessons (hours):							
Weekly: 2 / 2 / 2 During the semester: 24 / 24 / 24 Method of study: attendance							
method							
Number of credits: 6							
Recommended semester: 1							
Degree of study: The 1st degree of study							
Course prerequisites:							
Assessment methods:							
Assessment during the semester:							
Summary assessment of work results during the semester $= 40$ points							
Assessment during the semester will be awarded for active participation in lectures and							
seminars. At the seminars, it is necessary to write a paper on nomenclature and calculations							
for 10 points out of 20 points. A student can get a maximum of 20 points for participation in							
laboratory exercises and work reports							
Final assessment:							
Assessment of exam results $= 60$ points							
The exam will take place in written form. A minimum of 35 points is required to pass the							
exam							
Grading scale:							
Grade A: 91 – 100 points							
Grade B: 81 – 90 points							
Grade C: $71 - 80$ points							
Grade D: $61 - 70$ points							
Grade E: $55 - 60$ points							
Grade EX: less than 55 points							
Learning outcomes of the course unit:							
The student has comprehensive information of a basic nature for understanding the inorganic							
chemistry of elements, compounds and materials. Knows the basic nomenclature of inorganic							
elements and compounds. Can prepare basic inorganic compounds in the laboratory and							
calculate individual amounts of reacting substances							
Course contents:							
Chemical states of chemical substances - their basic characteristics							
Chemical thermodynamics: internal energy and enthalpy and their importance							
Entropy and Gibbs energy conditions of arbitrariness of events							
Equilibrium of a chemical reaction, equilibrium constant							
Equilibrium of a chemical reaction, equilibrium constant.							
Fifact of concentration, temperature and establish on the rate of chemical reaction							
Acids and bases from the point of view of Arrhenius. Drönstad and Lawis theory							
Actus and bases from the point of view of Affilentius, biofisted and Lewis theory.							
Excretory reactions: types of excretory reactions, solubility product							
Complexing reactions: complex coordination compound chromophore							
Ovidation reduction reactions: ovidizer reducer electrode notantials of motals. Norrest							
equation							
Quantum mechanics: wave function, quantum numbers, atomic orbitals							
Quantum mechanics, wave function, quantum numbers, atomic orbitals.							
The physical nature of the chamical hand and its characteristics							
The physical nature of the chemical bond and its characteristics.							
Types of chemical bolids and their flature.							
Elecurcal, magnetic, optical and mermal properties of morganic substances.							

Recommended of required reading:

JÓNA, E., ONDRUŠOVÁ, D., PAJTÁŠOVÁ, M.: Priemyselná anorganická chémia I: Všeobecná časť EAN 9788080752378. ISBN: 978-80-8075-237-8, r. 2007. GARAJ, J.: Chémia – učebné texty pre nechemické odbory, Trenčín 2005. KOHOUT, J., MELNÍK, M.: Anorganická chémia 1: Základy anorganickej chémie. STU Bratislava 1997. ISBN: 80-227-0972-7. E-learning TnUAD. Language: English Remarks: Compulsory course / Profile course Evaluation history: 0 Total number of graded students:

	А	В	С	D	E	FX	
	0.0	0.0	0.0	0.0	0.0	0.0	
Lecturers: doc. Ing. Katarína Moricová, PhD., Ing. Andrea Feriancová, PhD.							
Last modification: 31.08.2022							

Supervisor: doc. Ing. Jan Krmela, Ph.D.