Information sheet for the course: Computational Modeling in Materials Engineering I						
University: Alexander Dubček University of Trenčín						
Faculty: Faculty of Industrial Technologie	es in Púchov					
Course unit code: MI-I-P-2	Course unit title: Computational Modeling in					
	Materials Engineering I					
Form, scope and method of educational activity: Form of study: Lecture / Seminar / Laboratory tutorial Recommended number of lessons (hours): Weekly: 1 / 0 / 3 During the semester: 12 / 0 / 36 Method of study: attendance method						
Number of credits: 5						
Recommended semester: 1.						
Degree of study: The 2nd degree of study						
Course prerequisites:						
Assessment methods: Assessment during the semester: Summary assessment of work results during the semester = 40 points Semester work - project and independent work during the semester.						
Final assessment: Assessment of exam results = 60 points						
Grading scale: Grade A: $91 - 100$ points Grade B: $81 - 90$ points Grade C: $71 - 80$ points Grade D: $61 - 70$ points Grade E: $55 - 60$ points Grade EY: loss then 55 points						
Grade FA: less than 55 points						
The student can independently polye tack	a in the field of computational modeling using EEM					
in the field of linear station and dynamics	s in the neid of computational modeling using FEW,					
In the field of linear statics and dynamics of Course contents:	or constructions and material structures.					
FEM modeling and general considerations	5.					
General post-processing.						
Types of finite elements (plane stress, plane strain, axisymmetric bodies).						
3D Finite Elements, Plates, Shells and Solids.						
Material properties: isotropic, orthotropic, anisotropic.						
Static and geometric boundary conditions.						
Symmetry and antisymmetry.						
Creating a model.						
Volume modeling and direct generation.						
Boolean operations.						
Element attributes.						
mporting volume models from CAD systems.						
Bar and beam elements.						
Input data.						
Post-processing						
Analysis of 2D structures						
Special elements, elements of fracture mechanics.						
Concentration of tension.						
Concentration of tension.						

Dynamic analysis of structures.							
Harmonic and transient analysis.							
Analysis of structures with damping.							
<u> </u>							
Recommended of required reading:							
SPYRAKOS, C.C.: Finite Element Modeling Engineering Practice. Algor, Inc., 1994.							
E-learning TnUAD.							
Language:							
English							
Remarks: Compulsory course / Profile course							
Evaluation history: 0							
Total number of graded students:							
А	В	С	D	E	FX		
0.0	0.0	0.0	0.0	0.0	0.0		
Lecturers: Associate professor Ing. Ján Vavro, PhD.							
Last modification: 31.08.2022							
Supervisor: prof. RNDr. Mariana Pajtášová, PhD.							